

BIDAC project update

Develop image processing and analysis pipeline for in-vivo and ex-vivo MRI & DTI of mouse models

Clement Vachet¹, Guido Gerig¹, Osama Abdullah², Edward Hsu², Naveen Nagarajan³, Mario Capecchi³

¹SCI Institute, ²Small Animal Imaging Core, ³Human Genetics Dept.

October 2014

Project update

1) Optimization of in-vivo and ex-vivo MRI & DWI mouse brain acquisitions in collaboration with **Small Animal Imaging core**

MRI InVivo MRI ExVivo DWI InVivo DWI ExVivo

FLASH image 0.15x0.15x0.5 mm3

FLASH image 0.5x0.5x0.5 mm3

B0 image 0.15x0.15x0.5 mm3 (68-dir DWI)

B0 image 0.13x0.13x0.1 mm3 (68-dir DWI)

Project update

- 2) Adaptation of image processing framework from human imaging to small animal imaging
- 3) MRI analysis
 - Method: atlas-based segmentation
 - Use of Brookhaven public atlas
 - Ongoing study: 9 KO & 9 WT mice

Figure: Image processing framework

MRI analysis

Skull-stripping (top) and lobar parcellation (bottom)

Conclusion

Contributions

- Developed joint expertise and Utah HSC capabilities for mouse image acquisition and analysis
- Processing and statistical analysis were tested on ongoing study of a Hoxb8 mouse model of OCD (Obsessive Compulsive Disorder)
 - This will lead to co-authored publication and potential future grant writing

Next steps

• Diffusion Tensor Imaging (DTI) analysis

